Search results for "RADIATIVE-TRANSFER MODEL"

showing 2 items of 2 documents

Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data

2012

River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…

010504 meteorology & atmospheric sciencesFloodplainWater flowpointable sensors; CHRIS/PROBA; leaf area index (LAI); inversion; radiative transfer (RT) model; FLIGHT; river floodplain ecosystem; vegetation density; hydraulic roughnessleaf area index (LAI)0211 other engineering and technologiesClimate change02 engineering and technologyCHRIS/PROBA01 natural sciencesforestinversionLaboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote SensingLeaf area indexcoverlcsh:ScienceZenithriver floodplain ecosystem021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensinggeographychris-proba datahyperspectral brdf datageography.geographical_feature_categoryFLIGHTFlood mythrhine basinradiative-transfer modelHyperspectral imagingEnhanced vegetation index15. Life on landpointable sensorsPE&RCradiative transfer (RT) modelsugar-beetclimate-changeGeneral Earth and Planetary SciencesEnvironmental sciencehydraulic roughnesslcsh:Qflow resistanceleaf-area indexvegetation densityRemote Sensing
researchProduct

Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment

2022

Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral response of two important agronomic variables (1) leaf chlorophyll content (Cab ) and (2) leaf area index (LAI) under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated using the physically-based PROSAIL …

Atmospheric ScienceResilient LivelihoodsLEAF-AREA-INDEXSoil typePHOTOCHEMICAL REFLECTANCE INDEXBIOPHYSICAL PROPERTIESMeteorology & Atmospheric SciencesAdaptationLeaf chlorophyll contentGlobal and Planetary ChangeScience & TechnologyVEGETATION INDEXESSPECTRAL INDEXESGLOBAL SENSITIVITY-ANALYSISAgricultureNon-photosynthetic vegetationForestry22/4 OA procedureAgronomyHyperspectral responseGlobal sensitivity analysisITC-ISI-JOURNAL-ARTICLEPhysical SciencesLeaf area indexCHLOROPHYLL CONTENTGREEN LAILife Sciences & BiomedicineCANOPY REFLECTANCEAgronomy and Crop ScienceRADIATIVE-TRANSFER MODELAgricultural and Forest Meteorology
researchProduct